How to Implement a Validated Method

Ron Shoup
AIT Bioscience, LLC

CPSA 2010
“A Practical Guide to Bioanalysis”
• Familiarize yourself with the method:
 – Review the method
 – Review the method validation report
 – Examine the stability claims
 – Build the “assets” required to run the method
 – Establish competency
• Reference standards
 – Identity
 – Purity
 – Storage condition
 – Expiration

• Sampling
 – Compare in-life protocol to method’s requirements
 – Matrix, species, anticoagulant
 – Preservatives, inhibitors, blocking agents
 – Timing, temperature
 – Containers
• Stability
 – Review the validation stability data:
 • Most windows will be for less than few weeks
 • Was validation data generated against a freshly prepared and extracted calibration curve?
 – Will you need to extend the stability data to protect the period from collection until analysis?
 – Is ongoing sample storage consistent with the stability data?
• Sample Analysis Plan
 – The “go to” agreement on how to run the study
 – Declares appropriate choices for: reference standards, regulatory level, calibration range, location of QC samples, acceptance criteria, etc.
 – Plan consolidates proprietary SOP content, but plan can also trump SOP.
 – Convenient for sponsor customization; prevents misunderstandings
• Sample prep preliminaries:
 – Make and compare stocks
 – Screen internal standard
 – Screen matrix
 – Calibration standards, QC samples
 – Reagents, mobile phases, system suitability sample

• Establish instrumental performance
 – Calibration still current?
 – Requalifications up to date?
 – Meeting system suitability
• Establishing Prestudy Competency
 – Manual methods
 • Analyst qualification
 – Prepare a core validation run
 – Linearity, precision, accuracy, specificity, carryover
 – Robotic methods
 • Method variation lessened by executing version-controlled files
 • Consistency from month to month
 – Audit trails- continuous **ON**
Prestudy Qualification Run, 96 well plate

<table>
<thead>
<tr>
<th></th>
<th>Sys ✓</th>
<th>Blank</th>
<th>Blank + ISTD</th>
<th>Blank + ISTD</th>
<th>Cal 1</th>
<th>Cal 2</th>
<th>Cal 3</th>
<th>Cal 4</th>
<th>Cal 5</th>
<th>Cal 6</th>
<th>Cal 7</th>
<th>Cal 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carry over</td>
<td>Carry over</td>
<td>QC Low</td>
<td>QC Mid</td>
<td>QC High</td>
<td>QC High</td>
<td>QC Low</td>
<td>QC Mid</td>
<td>QC Low</td>
<td>QC High</td>
<td>QC Mid</td>
<td>QC Low</td>
<td>QC Low</td>
</tr>
<tr>
<td>QC Mid</td>
<td>QC Mid</td>
<td>QC High</td>
<td>QC Low</td>
<td>QC Mid</td>
<td>QC High</td>
<td>QC High</td>
<td>QC Low</td>
<td>Cal 8</td>
<td>Cal 7</td>
<td>Cal 6</td>
<td>Cal 5</td>
<td></td>
</tr>
<tr>
<td>Cal 4</td>
<td>Cal 3</td>
<td>Cal 2</td>
<td>Cal 1</td>
<td>Sys ✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Inactivate any samples with known error or instrumental malfunction
• Integrate consistently with single parameter set
• Calculate:
 – Drop any Cal > 15% bias from intended; > 75% remain?
 – Blank, Blank + ISTD, Carryover < (20% *Cal 1)?
• QC performance:
 – ≤ 15% CV
 – ≤ ±15% mean bias from intended
<table>
<thead>
<tr>
<th></th>
<th>Blank</th>
<th>Blank + ISTD</th>
<th>Blank + ISTD</th>
<th>Cal 1</th>
<th>Cal 2</th>
<th>Cal 3</th>
<th>Cal 4</th>
<th>Cal 5</th>
<th>Cal 6</th>
<th>Cal 7</th>
<th>Cal 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carry over</td>
<td>Carry over</td>
<td>QC High</td>
<td>QC High</td>
<td>QC Mid</td>
<td>QC Low</td>
</tr>
<tr>
<td>QC Low</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Cal 8</td>
<td>Cal 7</td>
<td>Cal 6</td>
<td>Cal 5</td>
<td>Cal 4</td>
<td>Cal 3</td>
<td>Cal 2</td>
<td>Cal 1</td>
<td>Sys ✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method Sample Analysis Run
• Inactivate any samples with known error or instrumental malfunction
• Integrate consistently with single parameter set
• Calculate:
 – Drop any Cal > 15% bias from intended; > 75% remain?
 – Blank, Blank + ISTD, Carryover < (20% *Cal 1)?
• QC performance:
 – At least 4/6 within ±15% of nominal
 – No two samples can fail at the same concentration
• Are the sample concentrations well distributed throughout the range?
 – Pause after 2-3 runs are completed
 • High and middle QC’s should bracket range of C_{max}
 • Low QC anchors the low end at 3 x LLOQ
 • Range should cover 4-5 half-lives on the elimination phase
 – Special scrutiny for BE studies!

• Fixes
 – Relocate the curve and QC’s (single validation run)
 – Add more QC’s and revise acceptance rules
• Consistency of internal standard response:
 – Cals/QC’s vs. incurred samples
 – Between subgroups of incurred samples
• Divergence between the front and back sets of calibration standards?
• Drift in internal standard response
• Drift in system check sample response
- Pre-establish drop criteria in SOP (poor chrom, instrument malfunction, attributable error, etc.)
- Sample tracking integrity during sample storage and analysis
- Watch carryover-
 - Investigate affected pairs
 - Is CO factor responsible for more than 5%?
- Fractured, convoluted runs- just fail them!
• Avoid reprocessing; integrate, then accept consequences.

• Remedi ate any lapse in stability coverages

• Document any deviations or investigations and discuss their impact on study

• Carefully justify any repeat analysis requests

• Retain and report all runs performed